Serotonin 5-HT1A receptors regulate AMPA receptor channels through inhibiting Ca2+/calmodulin-dependent kinase II in prefrontal cortical pyramidal neurons.

نویسندگان

  • Xiang Cai
  • Zhenglin Gu
  • Ping Zhong
  • Yong Ren
  • Zhen Yan
چکیده

We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons.

One of the important targets of dopamine D4 receptors in prefrontal cortex (PFC) is the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of D4 receptor activation on subcellular localization of CaMKII. We found that activation of D4 receptors, but not D2 receptors, induced a rapid translocation of alpha-CaMKII from cytosol to...

متن کامل

Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism.

The serotonin system and NMDA receptors (NMDARs) in prefrontal cortex (PFC) are both critically involved in the regulation of cognition and emotion under normal and pathological conditions; however, the interactions between them are essentially unknown. Here we show that serotonin, by activating 5-HT(1A) receptors, inhibited NMDA receptor-mediated ionic and synaptic currents in PFC pyramidal ne...

متن کامل

Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons.

Phosphorylation of glutamate receptors (GluRs) is emerging as an important regulatory mechanism. In this study 32P labeling of non-NMDA GluRs was investigated in cultured hippocampal neurons stimulated 2-15 min with agonists that selectively stimulate either Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II), Ca2+/phospholipid-dependent protein kinase C (PKC), or cAMP-dependent protein...

متن کامل

Stimulation of alpha1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: reversal by antipsychotic drugs.

Pyramidal neurons of the medial prefrontal cortex (mPFC) project to midbrain serotonergic neurons and control their activity. The stimulation of prefrontal 5-HT2A and AMPA receptors increases pyramidal and serotonergic cell firing, and 5-hydroxytryptamine (5-HT) release in mPFC. As the mPFC contains abundant alpha1-adrenoceptors whose activation increases the excitability of pyramidal neurons, ...

متن کامل

Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.

Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 39  شماره 

صفحات  -

تاریخ انتشار 2002